A Study on the Nourishing Number of Graphs and Graph Powers
نویسندگان
چکیده
Let N0 be the set of all non-negative integers and P(N0) be its power set. Then, an integer additive set-indexer (IASI) of a given graph G is defined as an injective function f : V (G) → P(N0) such that the induced edge-function f : E(G) → P(N0) defined by f(uv) = f(u) + f(v) is also injective, where f(u) + f(v) is the sumset of f(u) and f(v). An IASI f of G is said to be a strong IASI of G if |f(uv)| = |f(u)| |f(v)| for all uv ∈ E(G). The nourishing number of a graph G is the minimum order of the maximal complete subgraph of G so that G admits a strong IASI. In this paper, we study the characteristics of certain graph classes and graph powers that admit strong integer additive set-indexers and determine their corresponding nourishing numbers.
منابع مشابه
The upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملDistinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملOn global (strong) defensive alliances in some product graphs
A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...
متن کاملOn the fixed number of graphs
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015